
422 Java Programming for A-level Computer Science

15 Binary trees

In this chapter we will examine a fourth abstract data structure, a binary tree. A set of data in kept

in order in a binary tree by links between the data items in a similar way to a linked list. However,

each record can be linked to two other records. As an example, suppose that a tourist information

centre wishes to keep information of places of interest to visit in Wales. It should be possible to

quickly find any record using the town name as the search value.

As in the linked list, a start pointer indicates the position of the first town. The first item in the

binary tree is known as the root node.

Further towns can be linked to either the left pointer or right pointer in the record. The general rule

is that a data value earlier in the alphabet is attached as a left branch, and a data value later in the

alphabet is attached as a right branch. We set pointers to -1 to indicate the ends of branches.

To add further records, start at the root node then branch left or right at each node according to

alphabetical order until the end of a branch is reached. The new record is attached at that point.

For example, to add a record for Corris:

Start at the root node Dolgellau. C is before D, so branch left.

The node for Barmouth has been reached. C is after B, so branch right.

There is no right branch from Barmouth yet, so attach Corris at this point.

Using the same method, Tywyn would form a right branch from Porthmadog, and Bala would be a

left branch from Barmouth.

start 0 -1 Dolgellau -1 [0]

start 0 1 Dolgellau 2 [0]

-1 Porthmadog -1 [2] -1 Barmouth -1 [1]

start 0 1 Dolgellau 2 [0]

-1 Porthmadog 4 [2] 5 Barmouth 3 [1]

-1 Corris -1 [3] -1 Tywyn -1 [4] -1 Bala -1 [5]

 Chapter 15: Binary trees 423

A binary tree is a particularly suitable data structure if very fast searching is important. However,

frequently adding and deleting records can cause problems. When a node is removed the whole

tree has to be reconstructed. Therefore, if data is constantly changing, a linked list may be a more

suitable data structure to use.

As in the case of a linked list, a binary tree can be represented using arrays. Two pointer arrays will

be required, along with a start pointer to indicate the position of the root node.

In this chapter we will develop a binary tree system for the tourist information centre, and

investigate how records can be added, displayed and output.

Begin the project in the standard way. Close all previous projects, then set up a New Project. Give

this the name binaryTree, and ensure that the Create Main Class option is not selected.

Return to the NetBeans editing page. Right-click on the binaryTree project, and select New /

JFrame Form. Give the Class Name as binaryTree, and the Package as binaryTreePackage:

Return to the NetBeans editing screen.

 Right-click on the form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Click the Source tab above the design window to open the program code. Locate the main

method. Use the + icon to open the program lines and change the parameter “Nimbus” to

“Windows”.

Run the program and accept the main class which is offered. Check that a blank window appears

and has the correct size and colour scheme. Close the program and return to the editing screen.

Click the Design tab to move to the form layout view.

Select a Menu Bar component from the Palette and drag this onto the form. Right-click on the File

menu option and select Add From Palette / Menu Item. Right-click again on the File menu option

and add a second Menu Item.

Town

Dolgellau

Barmouth

Porthmadog

Corris

Tywyn

Bala

Left pointer

 1

 5

-1

-1

-1

-1

Right Pointer

 2

 3

 4

-1

-1

-1

 [0]
[1]
[2]
[3]
[4]
[5]
[6]

424 Java Programming for A-level Computer Science

Right-click on each of the menu items, and edit the text values to 'Save' and 'Open'. Change the text

of the Edit menu option to 'Display tree diagram'.

Right-click again on the menu options 'Save', 'Open' and 'Display tree diagram'. Rename these as

menuSave, menuOpen and menuDiagram.

Create another form by right-clicking on binaryTreePackage in the Projects window, then selecting

New / JFrame Form. Give the Class Name as 'treeDiagram'. Leave the Package name as

'binaryTreePackage'.

Return to the NetBeans editing screen.

Right-click on the treeDiagram.java form, and select Set layout / Absolute layout.

Go to the Properties window on the bottom right of the screen and click the Code tab. Select the

option: Form Size Policy / Generate pack() / Generate Resize code.

Set the defaultCloseOperation property to HIDE by selecting from the drop down list.

 Chapter 15: Binary trees 425

Add a Scroll Pane component to the form. The diagram we will be producing is large, so make the
form and scroll pane about 1000 pixels wide by 800 pixels high. Select a Panel component, then
drag and drop this in the middle of the scroll pane. Rename the panel as pnlDiagram. Set the
background property to White, and the preferredSize property to [1200,1200]. Vertical and
horizontal scroll bars should appear on the panel.

Use the tab at the top of the editing window to move to the binaryTree.java page. Click the Design
tab to move to the form layout screen.

Select the 'Display tree diagram' menu option. Go to the Properties window and select the Events
tab. Scroll down to locate the mouseClicked event and accept menuDiagramMouseClicked() from
the drop down list.

A menu click method will be created. Add a line of code to open the treeDiagram.java page.

 private void menuDiagramMouseClicked(java.awt.event.MouseEvent evt) {

 new treeDiagram().setVisible(true);

 }

Run the program. Click the 'Display tree diagram' menu option and check that the treeDiagram
form opens. Clicking the cross in the corner should close the treeDiagram form, but leave the main
program window running.

426 Java Programming for A-level Computer Science

Close the program window. Use the tab at the top of the NetBeans editing screen to move to the
treeDiagram.java page.

We will begin the program by producing an empty outline diagram of the binary tree. When data
items are entered, they can then be displayed in the boxes of the diagram. It will be more
convenient for the layout of the screen display if we draw the binary tree horizontally:

Click the Source tab to move to the program code display. Begin the programming by adding some
Java modules which will be needed to produce the graphics:

package binaryTreePackage;

import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics2D;

public class treeDiagram extends javax.swing.JFrame {

Use the Design tab to move back to the form layout view, and click on the white panel on the form.
Select the Events tab at the top of the Properties window, then locate the mouseMoved event.
Accept the pnlDiagramMouseMoved from the drop down list.

We will produce a method to draw boxes for the nodes of the binary tree. The node() method will

use two input variables to specify the horizontal and vertical position where the box is to be drawn

on the panel. Add a line of code to call the method to draw the root node.

 private void pnlDiagramMouseMoved(java.awt.event.MouseEvent evt) {

 node(40,500);

 }

 Chapter 15: Binary trees 427

Immediately below the MouseMoved method, add the node() method.

 private void node(int xpos, int ypos)
 {
 Graphics2D g = (Graphics2D) pnlDiagram.getGraphics();
 int height=20;
 g.setColor(Color.lightGray);
 g.drawRect(xpos,ypos,100,height);
 }

Run the program. Select the 'Display tree diagram' menu option. Move the mouse onto the white

panel and check that a box is drawn. It should be possible to move this up and down using the scroll

bar.

Close the program windows and return to the code editing page. We now need a strategy for

drawing further nodes of the binary tree. You may notice that the same graphic pattern is being

repeated inside itself as each new level of the diagram is produced. This suggests that a recursive

drawing method can be developed.

At each recursive call, the x- and y-position of the box will change, so we need a way to transfer

these coordinates during each call of the node() method.

repeat

repeat

repeat

repeat

428 Java Programming for A-level Computer Science

As each recursive call opens, the level within the tree increases by one, and the gap between nodes

is halved. These values will provide the parameters which we require to update the x- and y-

coordinates.

We will add level and gap as extra parameters for the node() method, and allow the method to call

itself recursively up to level 4 of the tree structure. Edit or add the lines of code indicated below.

 private void pnlDiagramMouseMoved(java.awt.event.MouseEvent evt) {

 node(0, 40,500,500);

 }

 private void node(int level, int xpos, int ypos, int gap)

 {

 Graphics2D g = (Graphics2D) pnlDiagram.getGraphics();

 int height=20;

 g.setColor(Color.lightGray);

 g.drawRect(xpos,ypos,100,height);

 if (level<5)

 {

 xpos = xpos+160;

 node(level+1, xpos,ypos-gap/2,gap/2);

 node(level+1, xpos,ypos+gap/2,gap/2);

 }

 }

Run the program. Select the 'Display tree diagram' menu option. Move the mouse onto the white

panel. Nodes should now appear for the series of levels of the binary tree.

level 0 level 1 level 2

gap

gap

edit this line

edit this line

 Chapter 15: Binary trees 429

Close the program windows and return to the code editing page. We just need to add the

connecting lines to the diagram. This is slightly tricky, as we have both upwards and downwards

branches, so the lines slant in different directions. A simple solution is to pass the x- and y-positions

of the previous node as extra parameters of the node() method. Each recursive call can then draw a

line from the current position to the end of the previous box. Edit or add the lines of code indicated

below.

 private void pnlDiagramMouseMoved(java.awt.event.MouseEvent evt) {

 node(0, 40,500,500,40,510);

 }

 private void node(int level,int xpos,int ypos,int gap,int previousX,int previousY)

 {

 Graphics2D g = (Graphics2D) pnlDiagram.getGraphics();

 int height=20;

 g.setColor(Color.lightGray);

 g.drawRect(xpos,ypos,100,height);

 g.drawLine(previousX,previousY,xpos,ypos+height/2);

 if (level<5)

 {

 xpos = xpos+160;

 node(level+1, xpos,ypos-gap/2,gap/2,xpos-60,ypos+10);

 node(level+1, xpos,ypos+gap/2,gap/2,xpos-60,ypos+10);

 }

 }

Run the program. Select the 'Display tree diagram' menu option. Move the mouse onto the white

panel. The nodes should now be linked to show the branching structure of the binary tree.

430 Java Programming for A-level Computer Science

Close the program windows and return to the NetBeans editing screen. Use the tab to open the

binaryTree.java page, then select the Design tab to move to the form layout view.

Add a Table component to the form and rename this as tblBinaryTree.

Go to the Properties window and locate the model property. Click in the right hand column to open

the table editor. Set the number of rows to 0, and columns to 4. Set the Titles and data Types for

the columns:

 <no title> Integer

 Town String

 Left Integer

 Right Integer

Remove the Editable ticks from each of the boxes.

 Chapter 15: Binary trees 431

Click the OK button to return to the form view and check that the table headings are displayed

correctly. Below the table, add a label 'Town' with a text field and button alongside. Rename the

text field as txtTown. Edit the button caption to 'Add' and the rename the button as btnAdd.

Use the Source tab to change to the program code view. We will begin by adding the Java modules

needed for file handling and for the table display. We will then create arrays to store the names of

the towns, and the left and right pointers for the binary tree, and set the start pointer 'root' to have

a value of 0.

package binaryTreePackage;

import java.io.File;
import java.io.IOException;
import java.io.RandomAccessFile;
import javax.swing.JOptionPane;
import javax.swing.table.DefaultTableModel;

public class binaryTree extends javax.swing.JFrame {

 String[] townData=new String[50];
 int[] left = new int[50];
 int[] right=new int[50];
 int root=0;
 static String filename = "binaryTree.dat";

 public binaryTree() {
 initComponents();
 }

Click the Design tab to return to the form layout view, then double click the 'Add' button to produce

a button click method.

432 Java Programming for A-level Computer Science

Insert a line of code in the button click method to call add(), then begin the add() method

immediately below.

 private void btnAddActionPerformed(java.awt.event.ActionEvent evt) {

 add();

 }

 private void add()
 {

 }

We will work first on the code needed to insert a data item into the root node of an empty tree. Add

lines of code to the add() method to do this.

 private void add()

 {

 String town=txtTown.getText();

 int position=0;

 Boolean finished;

 Boolean leftBranch=false;

 String currentData;

 if(townData[root]==null)

 {

 townData[root]=town;

 left[root]=-1;

 right[root]=-1;

 }

 txtTown.setText("");

 displayTable();

 }

We begin by collecting the town name from the txtTown text field, then we define variables which

will be needed by the method. The next block of code checks whether the root node is currently

empty; if so, the town name is stored at this point and the left and right pointers initialised to -1

values. We finally clear the text field and call a method to display the updated array values in the

table.

Insert the displayTable() method immediately below the add() method, as shown on the next page.

This uses a loop to check each of the elements of the townData[] array. If an entry is found, the

name of the town, along with the left and right pointer values, are added as a new line of the table.

 Chapter 15: Binary trees 433

 private void displayTable()

 {

 DefaultTableModel model = (DefaultTableModel)tblBinaryTree.getModel();

 model.setRowCount(0);

 for (int i=0; i<50;i++)

 {

 if (townData[i]!=null)

 {

 Object[] row = { i, townData[i],left[i],right[i]};

 model.addRow(row);

 }

 }

 }

Run the program. Enter 'Dolgellau' in the text box, then click the 'Add' button. Check that the town

name and the pointer values are correctly displayed in the table.

Close the program window, return to the code editing screen and locate the add() method.

If another town name is entered when the tree already contains data, we must search the tree to

find the position at the end of a branch where the new data item should be attached. An algorithm

for this procedure is:

start at the root node

LOOP while the position to add the new data has not yet been found

 get the data item at the current node

 IF the new data item comes alphabetically before this item THEN

 IF the left pointer at this node has a value of -1 THEN

 we have found the position to add the new record

 ELSE

 set the new current position to this left pointer value

 ENDIF

 ELSE (then new data item comes alphabetically after this item)

 IF the right pointer at this node has a value of -1 THEN

 we have found the position to add the new record

 ELSE

 set the new current position to this right pointer value

 ENDIF

 ENDIF

 END LOOP

434 Java Programming for A-level Computer Science

 Add the lines of code to locate the position where the new data item should be added to the binary

tree.

 if(townData[root]==null)
 {

 townData[root]=town;

 left[root]=-1;

 right[root]=-1;

 }

 else

 {

 finished=false;

 while(finished==false)

 {

 currentData=townData[position];

 if (town.compareTo(currentData)<0)

 {

 leftBranch=true;

 if (left[position]<0)

 {

 finished=true;

 }

 else

 {

 position=left[position];

 }

 }

 else

 {

 leftBranch=false;

 if (right[position]<0)

 {

 finished=true;

 }

 else

 {

 position=right[position];

 }

 }

 }

 }

 }

 txtTown.setText("");

 displayTable();

Once the position to add the new record has been found, several tasks must be carried out:

 The next available storage location must be found in the arrays.

 The new town name must be stored at this location, along with left and right pointer values

of -1 to indicate the end of the branch.

 Either the left or right pointer from the previous node must be set to the location of the new

record.

 Chapter 15: Binary trees 435

Add lines of code to carry out these tasks:

 else

 {

 leftBranch=false;

 if (right[position]<0)

 {

 finished=true;

 }

 else

 {

 position=right[position];

 }

 }

 }

 int i=0;

 while(townData[i]!=null)

 {

 i++;

 }

 townData[i]=town;

 left[i]=-1;

 right[i]=-1;

 if (leftBranch==true)

 {

 left[position]=i;

 }

 else

 {

 right[position]=i;

 }

 }

 txtTown.setText("");

 displayTable();

Run the program. Add a sequence of towns in the order: Dolgellau, Barmouth, Corris, Porthmadog,

Harlech, Tywyn, Bala, Blaenau. Check that the pointer values are set correctly to create the binary

tree.

436 Java Programming for A-level Computer Science

Close the program window and return to the NetBeans editing screen.

This would be a convenient point to add methods to save and reload the binary tree data. Use the

Design tab to open the form layout view. Go to the Menu Bar at the top of the form and double-

click the 'Save' menu option to create a method. Add code to store the arrays as a fixed length file in

a similar way to previous projects.

 The method begins by deleting any existing binaryTree.dat file.

 The start pointer 'root' is saved to disc as a two character string.

 A loop checks each of the array entries. If a town is present, the data is stored to disc using:

2 characters for the number of the array position, 30 characters for the town name, and 2

characters each for the left and right pointer values.

 private void menuSaveActionPerformed(java.awt.event.ActionEvent evt) {

 File oldfile = new File(filename);

 oldfile.delete();

 try (RandomAccessFile file = new RandomAccessFile(filename, "rw"))

 {

 String tStart=String.format("%-2s", root);

 String s = tStart + "***";

 file.write(s.getBytes());

 for (int i=0; i<50; i++)

 {

 if (townData[i]!=null)

 {

 String recordID=String.format("%-2s", i);

 String town=String.format("%-30s", townData[i]);

 String leftPointer=String.format("%-2s", left[i]);

 String rightPointer=String.format("%-2s", right[i]);

 s = recordID + town + leftPointer + rightPointer + "***";

 file.write(s.getBytes());

 }

 }

 file.close();

 }

 catch(IOException e)

 {

 JOptionPane.showMessageDialog(binaryTree.this, "File error");

 }

 }

Run the program. Enter towns in the order: Dolgellau, Barmouth, Corris, Porthmadog, Harlech,

Tywyn, Bala, Blaenau, then click the 'Save' menu option. Use Windows Explorer to locate the

binaryTree.dat file in the binaryTree folder, then open this with a text editor. Check that the town

names and pointer values correspond with the entries shown in the table.

 Chapter 15: Binary trees 437

Close the program window and return to the editing screen. Use the Design tab to move back to the

form layout view, then double click the 'Open' menu option to create a method. Add lines of code

which will read in the start pointer value, followed by each of the town records. Finally, the

displayTable() method is called to display the data.

 private void menuOpenActionPerformed(java.awt.event.ActionEvent evt) {

 String tRecordID;

 String tData;

 String tLeft;

 String tRight;

 try

 {

 int position;

 RandomAccessFile file = new RandomAccessFile(filename, "r");

 byte[] bytes = new byte[2];

 file.read(bytes);

 String s=new String(bytes);

 s=s.trim();

 root=Integer.valueOf(s);

 int readingCount=(int) file.length()/39;

 for (int i=0; i<readingCount; i++)

 {

 position=i*39+5;

 file.seek(position);

 bytes = new byte[39];

 file.read(bytes);

 s=new String(bytes);

 tRecordID=s.substring(0,2).trim(); s=s.substring(2);

 tData=s.substring(0,30).trim(); s=s.substring(30);

 tLeft=s.substring(0,2).trim(); s=s.substring(2);

 tRight=s.substring(0,2).trim();

 int n=Integer.valueOf(tRecordID);

 townData[n]=tData;

 left[n]=Integer.valueOf(tLeft);

 right[n]=Integer.valueOf(tRight);

 }

 file.close();

 displayTable();

 }

 catch(IOException e)

 {

 JOptionPane.showMessageDialog(binaryTree.this, "File error");

 }

 }

Run the program. Click the 'Open' menu option and check that the previous data is loaded correctly.

Add two additional towns: Pwllheli and Aberystwyth. Click the 'Save' menu option, then close the

program window.

Re-run the program and click the 'Open' menu option. Check that the full list of towns including

Pwllheli and Aberystwyth is loaded and displayed correctly, as shown below.

438 Java Programming for A-level Computer Science

Close the program window and return to the NetBeans editing screen. We will now work on the

procedure to display the data as a binary tree diagram. The array data will be needed by methods

on the treeDiagram.java page, so we will transfer it by means of a data class.

Go to the Projects window at the top left of the screen and locate the binaryTreePackage folder.
Right-click on binaryTreePackage and select New / Java Class. Give the Class Name as 'data',
leaving the Package name as 'binaryTreePackage'. Click the Finish button.

The data class file will open. Add variables to hold the binary tree data items and start pointer
value.

 package binaryTreePackage;

 public class data {

 public static int root;
 public static String[] townData=new String[50];
 public static int[] left = new int[50];
 public static int[] right=new int[50];

}

 Chapter 15: Binary trees 439

We will need to save the binary tree into the data class when the 'Display tree diagram' option is
selected from the Menu Bar of the main program.

Use the tab at the top of the editing window to move to the binaryTree.java page. Click the Source
tab to move to the code editing screen, then scroll down the program listing to locate the
menuDiagramMouseClicked() method. Add a line of code to call a saveData() method, then add
this below menuDiagramMouseClicked().

 private void menuDiagramMouseClicked(java.awt.event.MouseEvent evt) {

 saveData();

 new treeDiagram().setVisible(true);
 }

 private void saveData()
 {
 data.root = root;
 for (int i=0;i<50;i++)
 {
 data.townData[i]=townData[i];
 data.left[i] = left[i];
 data.right[i]=right[i];
 }
 }

Return to the treeDiagram.java page and click the Source tab to move to the program code screen.
We will begin by adding variables which will be needed to hold the data, and lines of code to set up a
graphics colour and font.

package binaryTreePackage;

import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics2D;

public class treeDiagram extends javax.swing.JFrame {

 String[] townData=new String[50];
 int[] left = new int[50];
 int[] right=new int[50];
 int[] xNode=new int[50];
 int[] yNode=new int[50];
 int root;
 Font sanSerifFont = new Font("SanSerif", Font.PLAIN, 12);
 int red=0x99;
 int green=0xFF;
 int blue=0xFF;
 Color lightBlue = new Color(red,green,blue);

 public treeDiagram() {
 initComponents();
 }

440 Java Programming for A-level Computer Science

In order to display the names of the towns in the correct positions on the tree diagram, we need to
know the level and branch number where the name appears in the tree. For example: Barmouth
should be drawn at level 1, branch 0 and Harlech should be drawn at level 2, branch 2.

We need a way of finding the level and branch number for each town. Fortunately this can be done

quite easily with a recursive method.

Please note that the tree diagram in the program extends horizontally, rather than vertically.

For items earlier in the alphabet, branches move upwards rather than to the left.

For items later in the alphabet, branches move downwards rather than to the right.

 We begin with the town at the root node. This has level 0, branch 0.

 If there is a upwards branch, the method can be called again recursively to find the level and

branch number of the next node. The level will have increased by 1, and the number of the

branch will have doubled. You can check this on the diagram above. Remember that the

diagram has been rotated, so that a left branch is now shown as sloping upwards towards

the next node.

 If there is a downwards branch, the method can again be called recursively to find the level

and branch number of the next node. The level will again have increased by 1, but the

number of the branch will have doubled plus one added. You can check this on the diagram,

remembering that a right branch is now shown as sloping downwards towards the next

node.

Locate the treeDiagram() method near the beginning of the program listing. We will add a call to a

getData() method, as shown below, which will load the binary tree data. We will also call a

recursive method nodeOrder() to find the level and branch number for each town.

Dolgellau

Barmouth

Porthmadog

level 0 level 1 level 2 level 3

branch 0

branch 0

branch 0

branch 1

branch 1

branch 2

branch 3

Harlech

branch 0

branch 1

branch 2

branch 3

branch 4

branch 5

branch 6

branch 7

 Chapter 15: Binary trees 441

 public treeDiagram() {
 initComponents();

 getData();
 nodeOrder(root,0,0);

 }

Add the getData() and nodeOrder() methods below treeDiagram().

 public treeDiagram() {

 initComponents();

 getData();

 nodeOrder(root,0,0);

 }

 private void getData()

 {

 root=data.root;

 for (int i=0;i<50;i++)

 {

 townData[i]=data.townData[i];

 left[i] =data.left[i];

 right[i]=data.right[i];

 }

 }

 private void nodeOrder(int node, int level, int position)

 {

 xNode[node]=level;

 yNode[node]=position;

 if (left[node]>0)

 {

 nodeOrder(left[node], level+1,position*2);

 }

 if (right[node]>0)

 {

 nodeOrder(right[node], level+1,position*2+1);

 }

 }

As the level and branch for each town is found, these values are stored in the corresponding

elements of the xNode[] and yNode[] arrays, so they are available when we draw the tree diagram.

Scroll down the program listing to find the node() method which you produced earlier. Edit the title

line, as shown below, to include a branch parameter. (Please note that the title line should appear as

a single line of code without a line break.) Add the variables s and found at the start of the method.

442 Java Programming for A-level Computer Science

 private void node(int level,int branch,int xpos,int ypos,int gap,

 int previousX,int previousY)

 {

 Graphics2D g = (Graphics2D) pnlDiagram.getGraphics();

 int height=20;

 String s="";

 Boolean found=false;

 g.setColor(Color.lightGray);

 g.drawRect(xpos,ypos,100,height);

Add or edit the lines of code shown below. As each node is being plotted, the computer uses a loop

to check the arrays for a town at the corresponding level and branch number. If a town is found, the

name will be diplayed in a blue box. If no name is found at this node, a grey outline will be drawn

instead. The method then calls itself recursively to process the next branches of the tree.

 private void node(int level, int branch, int xpos, int ypos, int gap,

 int previousX, int previousY)

 {

 Graphics2D g = (Graphics2D) pnlDiagram.getGraphics();

 int height=20;

 String s="";

 Boolean found=false;

 for(int i=0; i<50; i++)

 {

 if (xNode[i]==level && yNode[i]==branch && townData[i]!=null)

 {

 s=townData[i];

 g.setColor(lightBlue);

 g.fillRect(xpos,ypos,100,height);

 g.setColor(Color.black);

 g.drawString(s,xpos+3,ypos+height/2+4);

 g.drawRect(xpos,ypos,100,height);

 g.drawLine(previousX,previousY,xpos,ypos+height/2);

 found=true;

 }

 }

 if (found==false)

 {

 g.setColor(Color.lightGray);

 g.drawRect(xpos,ypos,100,height);

 g.drawLine(previousX,previousY,xpos,ypos+height/2);

 }

 if (level<5)

 {

 xpos = xpos+160;

 node(level+1, branch*2, xpos,ypos-gap/2,gap/2,xpos-60,ypos+10);

 node(level+1, branch*2+1, xpos,ypos+gap/2,gap/2,xpos-60,ypos+10);

 }

 }

 Chapter 15: Binary trees 443

We need to make one final change before running the program. Locate the MouseMoved() method

and edit the call to node(), to include the extra parameter for the branch number.

 private void pnlDiagramMouseMoved(java.awt.event.MouseEvent evt) {

 node(0,0,40,500,500,40,510);

 }

Run the program. Click the 'Open' menu option to load the data file, then click the 'Display tree

diagram' option. If all has gone well, the towns should now be displayed in their correct positions

on the tree diagram.

Close the program windows and return to the NetBeans editing screen.

The main purpose of storing data in a binary tree is to allow individual records to be retrieved

quickly. It is also quite easy, again using recursion, to print out every data item from the binary tree

in sorted order. We will carry out these tasks next.

Click the tab to return to the binaryTree.java page, then the Design tab to select the form layout

view. Select a Menu component from the Palette and add this to the Menu Bar, as shown below.

Drag the Menu component onto the Menu Bar, being caeful that the arrow of the mouse pointer is

in the centre of the Menu Bar before releasing the mouse button.

Change the text to 'Search and output', and rename the component as menuOutput.

444 Java Programming for A-level Computer Science

Go to the Projects window at the top left of the screen and locate the binaryTreePackage folder.

Right click on binaryTreePackage, then select New / JFrame Form. Give the Class Name as output,

leaving the Package name as binaryTreePackage.

Click Finish to return to the NetBeans editing screen.

 Right-click on the output.java form, and select Set layout / Absolute layout.

 Go to the Properties window on the bottom right of the screen and click the Code tab.

Select the option: Form Size Policy / Generate pack() / Generate Resize code.

 Set the defaultCloseOperation property to HIDE by selecting from the drop down list.

Return to the binaryTree.java page and select the 'Search and output' menu option. Go to the

Properties window and select the Events tab. Locate the mouseClicked event, and accept

menuOutputMouseClicked from the drop down list.

Add lines of code to the button click method to save the binary tree data, then open the output.java

form. It is necessary to save the data so that it will be available when the new form opens.

 private void menuOutputMouseClicked(java.awt.event.MouseEvent evt) {

 saveData();

 new output().setVisible(true);

 }

Run the program. Click the 'Search and output' menu option, and check that the output.java

window opens correctly, and can be closed without exiting from the program.

Close the program windows and return to the NetBeans screen. Use the tab to select the

output.java page.

 Chapter 15: Binary trees 445

Add a List component to the form, and rename this as lstOutput.

Use the Source tab to select the program code screen. Add a Java module needed by the List

component, and define variables to hold the binary tree data. We then call the getData() method

to load the binary tree data from the data class.

package binaryTreePackage;

import javax.swing.DefaultListModel;

public class output extends javax.swing.JFrame {

 int root;

 String[] townData=new String[50];

 int[] left = new int[50];

 int[] right=new int[50];

 DefaultListModel listModel = new DefaultListModel();

 public output() {

 initComponents();

 getData();

 listModel.clear();

 lstOutput.setModel(listModel);

 }

 private void getData()

 {

 root=data.root;

 for (int i=0;i<50;i++)

 {

 townData[i]=data.townData[i];

 left[i] =data.left[i];

 right[i]=data.right[i];

 }

 }

446 Java Programming for A-level Computer Science

Use the Design tab to return to the form layout view. Add a Label 'Town' below the List box. Place a

Text field alongside and rename this as txtTown. Finally, add a button with the caption 'Search tree'.

Rename the button as btnSearch.

Double click the button to create a method. Add the line of code to call a search() method, then

begin the search() method immediately underneath. Insert the lines of code which initialise

variables and collect the name of the required town from the txtTown text field.

 private void btnSearchActionPerformed(java.awt.event.ActionEvent evt) {

 search();

 }

 private void search()

 {

 int location= -1;

 String searchItem=txtTown.getText();

 int node=root;

 Boolean finished=false;

 listModel.clear();

 }

The loop structure to search for a town is similar to the method we used previously to add a record

to the tree.

 start at the root node

 LOOP while the required town has not been found AND there are still nodes to search

 get the data item at the current node

 IF the required town has not been found THEN

 IF the required town comes alphabetically before this item THEN

 branch upwards on the diagram if a left branch is present

 ELSE

 branch downwards on the diagram if a right branch is present

 ENDIF

ENDIF

 END LOOP

 Chapter 15: Binary trees 447

Add the lines of code to implement the search algorithm.

 private void search()

 {

 int location= -1;

 String searchItem=txtTown.getText();

 int node=root;

 Boolean finished=false;

 listModel.clear();

 while (finished==false)

 {

 listModel.addElement("CURRENT NODE: "+townData[node]);

 if(townData[node].compareTo(searchItem)==0)

 {

 finished=true;

 location=node;

 listModel.addElement("FOUND at location "+location);

 }

 else

 {

 if(townData[node].compareTo(searchItem)>0)

 {

 node=left[node];

 listModel.addElement("branching upwards...");

 }

 else

 {

 node=right[node];

 listModel.addElement("branching downwards...");

 }

 if(node==-1)

 {

 finished=true;

 }

 }

 }

 if (location<0)

 {

 listModel.addElement("NOT PRESENT in the tree");

 }

 lstOutput.setModel(listModel);

 txtTown.setText("");

 }

Run the program and load the data file. Click the menu option to open the tree diagram window, so

that this can be used to check that the search is carried out correctly.

Click the menu option to open the search window. Enter the names of different towns, then check

that the output displayed in the List corresponds with the correct search path on the tree diagram,

as in the example below. Check also that a correct message is given if the town is not present in the

tree.

448 Java Programming for A-level Computer Science

Close the program windows and return to the NetBeans editing screen.

In addition to selecting a single record, it is possible to output all records of the binary tree. We will

go back to considering a tree diagram drawn horizontally. Three different sequences are possible,

which are known as pre-order, in-order and post-order. Imagine a line being traced anticlockwise

around the outside of the binary tree, starting beside the root node:

For a pre-order sequence, each town name is output as the line passes the left side of the node,

giving the sequence: Dolgellau, Barmouth, Bala, Corris, Porthmadog, Tywyn.

 Corris Tywyn

 Dolgellau

Porthmadog Barmouth

 Bala

 Corris Tywyn

 Dolgellau

Porthmadog Barmouth

 Bala

 Chapter 15: Binary trees 449

For an in-order sequence, each town name is output as the line passes beneath the node, giving the

sequence: Bala, Barmouth, Corris, Dolgellau, Porthmadog, Tywyn.

The post-order sequence outputs each town name as the line passes the right side of the node,

giving: Bala, Corris, Barmouth, Tywyn, Porthmadog, Dolgellau.

The in-order sequence is probably the most commonly used, as this outputs the data in alphabetical

order, but pre-order and post-order sequences are important in some software applications. All

three of the sequences can be generated by recursive methods. We will now examine how output

sequences can be programmed.

Use the Design tab to open the form layout view for the output.java page. Add a label 'Output tree'

and three buttons with the captions 'pre-order', 'in-order' and 'post-order'. Rename the buttons as

btnPreorder, btnInorder and btnPostorder.

 Corris Tywyn

 Dolgellau

Porthmadog Barmouth

 Bala

 Corris Tywyn

 Dolgellau

Porthmadog Barmouth

 Bala

450 Java Programming for A-level Computer Science

Double click the pre-order button to create a method. Add lines of code to clear the List box, then

call a recursive method preOrder(). Add this method immediately underneath.

 private void btnPreoderActionPerformed(java.awt.event.ActionEvent evt) {

 listModel.clear();

 preOrder(root);

 lstOutput.setModel(listModel);

 }

 private void preOrder(int node)

 {

 listModel.addElement(townData[node]);

 if (left[node]>0)

 {

 preOrder(left[node]);

 }

 if (right[node]>0)

 {

 preOrder(right[node]);

 }

 }

Pre-order() begins by outputting the town at the root node, which in this example would be

Dolgellau. The method then starts again recursively for the sub-tree with Barmouth as the new root

node. After outputting Barmouth, the method starts yet again for the sub-tree with Bala as the root

node. Bala is output. No further subtrees exist, so the recursive call to Bala closes and the method

then attempts to process right subtrees from Barmouth. Corris is found and output next. Recursive

calls close, returning to the root of the complete tree. Further recursive calls then open to reach

Porthmadog.

Run the program. Load the data file, then open the tree diagram window so that the output can be

verified against the tree structure.

Open the Search and output window, then click the pre-order button. Check that the output

sequence of towns is correct. Remember that the tree diagram has been rotated, so the outline

now runs clockwise around the nodes of the tree. The method begins by outputting the data at the

current node, then checks for an upward branch to a sub-tree. Finally, it checks for a downward

branch.

 Bala

 Corris Dolgellau

Porthmadog

 Barmouth

 Chapter 15: Binary trees 451

Close the program windows and return to the output.java page. Use the Design tab to move to the

form layout view, then double click the in-order button to create a method. Add lines of code to

clear the List, then call an inOrder() method. Add this method underneath.

The inOrder() method is almost identical to the preOder() method, except that recursive calls to

any left subtrees are carried out before the data at the current node is output.

 private void btnInorderActionPerformed(java.awt.event.ActionEvent evt) {

 listModel.clear();

 inOrder(root);

 lstOutput.setModel(listModel);

 }

 private void inOrder(int node)

 {

 if (left[node]>0)

 {

 inOrder(left[node]);

 }

 listModel.addElement(townData[node]);

 if (right[node]>0)

 {

 inOrder(right[node]);

 }

 }

Run the program. Load the data file, then open the tree diagram window so that the output can be

verified against the tree structure.

Open the Search and output window, then click the in-order button. Check that the output

sequence of towns is correct, as illustrated below.

452 Java Programming for A-level Computer Science

Close the program windows and return to the output.java page. Use the Design tab to move to the

form layout view, then double click the post-order button to create a method. Add lines of code to

clear the List, then call an postOrder() method. Add this method underneath.

 private void btnPostorderActionPerformed(java.awt.event.ActionEvent evt) {

 listModel.clear();

 postOrder(root);

 lstOutput.setModel(listModel);

 }

 private void postOrder(int node)

 {

 if (left[node]>0)

 {

 postOrder(left[node]);

 }

 if (right[node]>0)

 {

 postOrder(right[node]);

 }

 listModel.addElement(townData[node]);

 }

The postOrder() method is again very similar, except that recursive calls to both left and right

subtrees are carried out before the data at the current node is output.

Run the program and again check that the output sequence is correct according to the tree diagram.

